Aspects of the reproductive biology of two archer fishes Toxotes chatareus, (Hamilton 1822) and Toxotes jaculatrix (Pallas 1767)
Journal Publication ResearchOnline@JCUAbstract
Various aspects of the reproductive biology of two archer fishes Toxotes chatareus and Toxotes jaculatrix were studied to describe gonad development, spawning season, sex ratio, and fecundity. Spawning season was assessed using monthly changes in gonadosomatic index (GSI) and histological inspection of the gonads. Both species exhibit two modes of oocytes; a mode of small primary growth oocytes and a single mode that increases with size as oocytes sequester vitellogenin and undergo maturation, showing the synchronous oocyte development typical of total spawners. Based on GSI values and advanced stages of oocyte maturity, T. chatareus and T. jaculatrix, females appear to spawn from November to December. The average fecundity of female T. chatareus was 55 000 ± 5538 eggs, and T. jaculatrix was 50 000 ± 3440 eggs; fecundity ranged from 20 000 to 150 000 eggs for both species, with relative fecundities of 600 to 1100 eggs/g body weight, and a mean value of 800 ± 32 for T. chatareus; relative fecundity ranged from 500 to 1100 with a mean value of 700 ± 23 for T. jaculatrix. Sex ratio, defined as the proportion of males to females, was 2.2 and 2.5 in T. chatareus and T. jaculatrix, respectively. The apparent abundance of males in samples could be due to females being positioned lower in the water column and therefore being sampled less frequently. Our results indicate that in both species, spawning occurs between the months of November and December during the monsoon season, which provides the mangrove coastal waters inhabited by these species with an abundance of food resources and additional floodplain nursery habitat for larvae and juveniles.
Journal
Environmental Biology of Fishes
Publication Name
N/A
Volume
93
ISBN/ISSN
1573-5133
Edition
N/A
Issue
N/A
Pages Count
13
Location
N/A
Publisher
Springer
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1007/s10641-011-9944-6