Linking tidal wetland vegetation mosaics to micro-topography and hydroperiod in a tropical estuary
Journal Publication ResearchOnline@JCUAbstract
Although saltmarshes are critical coastal ecosystems they are threatened by human activities and sea-level rise (SLR). Long-term restoration and management strategies are often hampered by an insufficient understanding of the past, present, and future processes that influence tidal wetland functionality and change. As understanding vegetation distribution in relation to elevation and tidal hydroperiod is often the basis of restoration and management decisions, this study investigated the relationships between micro-topography, tidal hydroperiod, and the distribution of saltmarshes, mangroves, and unvegetated flats in a tropical estuary situated within a Great Barrier Reef Catchment in North Queensland, Australia. A combination of high-resolution unattended-aerial-vehicle (UAV)-derived digital elevation model (DEMs) and land cover coupled with 2D hydrodynamic modelling was used to investigate these aspects. Zonation was more complex than generally recognised in restoration and legislation, with overlapping distribution across elevation. Additionally, although each type of tidal wetland cover had distinct mean hydroperiods, and elevation and hydroperiods were strongly correlated, elevation explained only 15% of the variability in tidal wetland cover distribution. This suggests that other factors (e.g., groundwater dynamics) likely contribute to tidal wetland cover zonation patterns. These findings underline that simplistic rules in the causality of tidal wetlands need to be applied with caution. Their applicability in management and restoration are likely to vary depending on contexts, as observed in our study site, with varying environmental and biological factors playing important roles in the distribution patterns of tidal wetland components. We also identified strong monthly variability in tidal hydroperiods and connectivity experienced by each tidal wetland cover (e.g., 10.26% of succulent saltmarshes were inundated during lower-than-average tides compared to 66% in higher than-average tides), highlighting the importance of integrating temporal dynamics in tidal wetland research and management. Additionally, we explored the potential effects of sea-level rise (SLR) on the tidal hydroperiods and connectivity of our study site. The results show that the inundation experienced by each tidal wetland cover may increase importantly if vegetation does not keep up with SLR (e.g., under a 0.8 m sea level scenarios, mean maximum depth of succulent saltmarsh in higher-than-average tides is 184.1 mm higher than the current mean-maximum inundation depth of mangroves). This underlines the importance of acquiring detailed spatio-temporally resolved data to enable the development of robust long-term and adaptive saltmarsh management strategies. Our results are discussed from a management and restoration perspective. We highlight the uncertainties and complexities in understanding the processes influencing tidal wetland functionality, and hence, their management and restoration prospects.
Journal
Marine Environmental Research
Publication Name
N/A
Volume
197
ISBN/ISSN
1879-0291
Edition
N/A
Issue
N/A
Pages Count
13
Location
N/A
Publisher
Elsevier
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.marenvres.2024.106485