High genetic merit dairy heifers grazing low quality forage had similar weight gain and urinary nitrogen excretion to those of low genetic merit heifers
Journal Publication ResearchOnline@JCUAbstract
Climate variability and increasing drought events have become significant concerns in recent years. However, there is limited published research on body weight (BW) change of dairy heifers with different genetic merit when grazing on drought impacted pastures in southern Australia. Achieving target body weight (BW) is vital for dairy heifers, especially during critical stages like mating and calving. This study aimed to assess dry matter (DM) intake, BW change, urinary nitrogen excretion, and grazing behaviours of high vs. low genetic dairy heifers grazing pasture during a 43-day experimental period in a drought season. Forty-eight Holstein Friesian heifers grazed on ryegrass-dominant pasture and were divided into two groups based on their high and low Balanced Performance Index (HBPI and LBPI, respectively). Each group was further stratified into six plots, with similar BW, resulting in four heifers per replication group. Data from the five measurement days were averaged for individual cows to analyse the dry matter intake, nitrogen intake and nitrogen excretion. The statistical model included the treatment effect of BPI (H and L) and means were analysed using ANOVA. The pasture quality was poor, with metabolizable energy 9.3 MJ/Kg DM and crude protein 5.9% on a DM basis. Nitrogen intake and urinary nitrogen excretion were significantly higher (p < 0.05) in HBPI compared to the LBPI. However, despite these differences, the study did not find any advantages of having HBPI heifer grazing on low quality forage in terms of BW performance.
Journal
Frontiers in Veterinary Science
Publication Name
N/A
Volume
10
ISBN/ISSN
2297-1769
Edition
N/A
Issue
N/A
Pages Count
6
Location
N/A
Publisher
Frontiers Research Foundation
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.3389/fvets.2023.1234872