Near-infrared spectroscopy and machine learning algorithms for rapid and non-invasive detection of Trichuris
Journal Publication ResearchOnline@JCUAbstract
Background: Trichuris trichiura (whipworm) is one of the most prevalent soil transmitted helminths (STH) affecting 604–795 million people worldwide. Diagnostic tools that are affordable and rapid are required for detecting STH. Here, we assessed the performance of the near-infrared spectroscopy (NIRS) technique coupled with machine learning algorithms to detect Trichuris muris in faecal, blood, serum samples and non-invasively through the skin of mice. Methodology: We orally infected 10 mice with 30 T. muris eggs (low dose group), 10 mice with 200 eggs (high dose group) and 10 mice were used as the control group. Using the NIRS technique, we scanned faecal, serum, whole blood samples and mice non-invasively through their skin over a period of 6 weeks post infection. Using artificial neural networks (ANN) and spectra of faecal, serum, blood and non-invasive scans from one experiment, we developed 4 algorithms to differentiate infected from uninfected mice. These models were validated on mice from a second independent experiment. Principal findings: NIRS and ANN differentiated mice into the three groups as early as 2 weeks post infection regardless of the sample used. These results correlated with those from concomitant serological and parasitological investigations. Significance: To our knowledge, this is the first study to demonstrate the potential of NIRS as a diagnostic tool for human STH infections. The technique could be further developed for large scale surveillance of soil transmitted helminths in human population.
Journal
PLoS Neglected Tropical Diseases
Publication Name
N/A
Volume
17
ISBN/ISSN
1935-2735
Edition
N/A
Issue
11
Pages Count
17
Location
N/A
Publisher
Public Library of Science
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1371/journal.pntd.0011695