Sunlight and red to far-red ratio impact germination of tropical montane cloud forest species

Journal Publication ResearchOnline@JCU
Hoyle, Gemma L.;Stevens, Amelia V.;Guja, Lydia K.;Sommerville, Karen D.;Worboys, Stuart;Crayn, Darren M.
Abstract

Context: Australia’s tropical montane cloud forests (TMCF) exhibit exceptional species richness and endemism. Determinants of regeneration via seed of these species are next to unknown, limiting our ability to quantify and project their vulnerability to climate change. The ratio of red to far-red light (R:FR) has been shown to influence seed germination of many tropical species.Aims: We investigated germination of six previously unstudied TMCF species in relation to the presence or absence of light (light/dark) and light quality (R:FR). We hypothesised that increased R:FR would lead to increased germination and that small-seeded species would be more likely to have a light requirement and be less sensitive to R:FR compared to larger-seeded species.Methods: Sunlight and polyester filters were used to create a gradient of R:FR ranging from 0.1 to 1.14. Seeds were also sown in constant darkness.Key results: Across species we saw varying germination responses. Three of the four smallest-seeded species exhibited an absolute light requirement for germination and did not discriminate between different R:FR. Germination of the small-seeded TMCF endemic Dracophyllum increased exponentially with increasing R:FR. Germination of the largest-seeded species was inhibited by both low and high R:FR, and germination was higher in constant darkness than diurnal light/dark. All six species were able to germinate at remarkably low R:FR values.Conclusions: Light affects seed germination of Australia’s TMCF plant species in a variety of ways.Implications: The findings of this study provide insights into plant recruitment in situ, and the acclimation potential of these species under reduced R:FR predicted for the future.

Journal

Australian Journal of Botany

Publication Name

N/A

Volume

71

ISBN/ISSN

1444-9862

Edition

N/A

Issue

7

Pages Count

14

Location

N/A

Publisher

CSIRO Publishing

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1071/BT22126