Distinctive calcium isotopic composition of mice organs and fluids: implications for biological research

Journal Publication ResearchOnline@JCU
Cui, Meng Meng;Moynier, Frédéric;Su, Ben Xun;Dai, Wei;Mahan, Brandon;Le Borgne, Marie
Abstract

The stable calcium (Ca) isotopes offer a minimally invasive method for assessing Ca balance in the body, providing a new avenue for research and clinical applications. In this study, we measured the Ca isotopic composition of soft tissues (brain, muscle, liver, and kidney), mineralized tissue (bone), and blood (plasma) from 10 mice (5 females and 5 males) with three different genetic backgrounds and same age (3 months old). The results reveal a distinctive Ca isotopic composition in different body compartments of mice, primally controlled by each compartment’s unique Ca metabolism and genetic background, independent of sex. The bones are enriched in the lighter Ca isotopes (δ44/40Cabone = − 0.10 ± 0.55 ‰) compared to blood and other soft tissues, reflecting the preferential incorporation of lighter Ca isotopes through bone formation, while heavier Ca isotopes remain preferentially in blood. The brain and muscle are enriched in lighter Ca isotopes (δ44/40Cabrain = − 0.10 ± 0.53 ‰; δ44/40Camuscle = 0.19 ± 0.41 ‰) relative to blood and other soft tissues, making the brain the isotopically lightest soft tissues of the mouse body. In contrast, the kidney is enriched in heavier isotopes (δ44/40Cakidney = 0.86 ± 0.31 ‰) reflecting filtration and reabsorption by the kidney. This study provides important insight into the Ca isotopic composition of various body compartments and fluids. Graphical Abstract: [Figure not available: see fulltext.]

Journal

Analytical and Bioanalytical Chemistry

Publication Name

N/A

Volume

415

ISBN/ISSN

1618-2650

Edition

N/A

Issue

N/A

Pages Count

12

Location

N/A

Publisher

Springer

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1007/s00216-023-04962-7