Evolution towards dispatchable PV using forecasting, storage, and curtailment: A review

Journal Publication ResearchOnline@JCU
Liu, Zhuoqun;Du, Yang
Abstract

The 2050 net-zero emission goal has pushed the global transition of power systems from fuel-powered to renewable-powered. Solar photovoltaic (PV) power is anticipated to contribute significantly to renewable generation. However, the intermittent nature of solar power hinders the growth of PV capacity during this global transition. Integrating PV into power systems usually requires abundant support resources. Typical facilities include dispatchable fuel-based generators and energy storage systems. However, newer PV systems should not assume sufficient support from fuel-based generators to facilitate the net-zero transition. Although the option to use energy storage, especially batteries, to replace fuel-based generators exists, scaling the capacity can have affordability issues. Despite the challenges, PV penetration is growing and needs to grow further. Overcoming the challenges means eliminating intermittency using minimum storage and negligible fuel. The solution is effectively converting PV to a dispatchable source. The research about forecasting and controlling PV power has centered on reducing the impact of PV power intermittency. However, the need for developing dispatchability out of PV power has yet to be sufficiently addressed. This paper is conducted to identify the research directions needed to facilitate dispatchable PV and, thus, global high PV penetration. To describe the dispatchability of PV power, uncertainty, variability, and flexibility are chosen as descriptors. As the PV power gains flexibility, uncertainty and variability reduce for a PV system. Eventually, PV power can become flexible enough to be dispatchable. Moreover, the support services needed by PV power can be undertaken mainly by itself, thus enabling high penetration. From the literature, PV forecasting, energy storage, and inverter-controlled curtailment are identified to be cornerstones of dispatchable PV power. Power system dispatch algorithms have used PV forecasts to compensate for uncertainty efficiently. Storage, especially batteries, and PV inverters, have been used to control PV power output against undesirable variation. In this review paper, the practice of utilizing PV in power systems is uniquely divided into four categories according to the descriptors. Unlike the convention that curtailment should be avoided, this review emphasizes the practicality of overbuilding PV capacity and curtailing PV power. It ultimately will be possible to effectively eliminate uncertainty and variability as the three cornerstone technologies evolve. By presenting the road map for reducing the impact of PV power intermittency, this paper elaborates on the motivation for researching dispatchable PV. From the past and low penetration to the contemporary situation, PV power evolved from being unconstrained to forecasted and constrained. Based on the literature about forecasting, energy storage, and curtailment, this paper concludes that dispatchable PV power will be needed and is achievable.

Journal

Electric Power Systems Research

Publication Name

N/A

Volume

223

ISBN/ISSN

1873-2046

Edition

N/A

Issue

N/A

Pages Count

12

Location

N/A

Publisher

Elsevier

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1016/j.epsr.2023.109554