A physically realizable molecular motor driven by the Landauer blowtorch effect

Journal Publication ResearchOnline@JCU
Preston, Riley J.;Kosov, Daniel S.
Abstract

We propose a model for a molecular motor in a molecular electronic junction driven by a natural manifestation of Landauer’s blowtorch effect. The effect emerges via the interplay of electronic friction and diffusion coefficients, each calculated quantum mechanically using nonequilibrium Green’s functions, within a semiclassical Langevin description of the rotational dynamics. The motor functionality is analyzed through numerical simulations where the rotations exhibit a directional preference according to the intrinsic geometry of the molecular configuration. The proposed mechanism for motor function is expected to be ubiquitous for a range of molecular geometries beyond the one examined here.

Journal

Journal of Chemical Physics

Publication Name

N/A

Volume

158

ISBN/ISSN

1089-7690

Edition

N/A

Issue

22

Pages Count

9

Location

N/A

Publisher

American Institute of Physics

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1063/5.0153000