Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum

Journal Publication ResearchOnline@JCU
Uzoechi, Samuel C.;Rosa, Bruce A.;Singh, Kumar Sachin;Choi, Young Jun;Bracken, Bethany K.;Brindley, Paul J.;Townsend, R. Reid;Sprung, Robert;Zhan, Bin;Bottazzi, Maria Elena;Hawdon, John M.;Wong, Yide;Loukas, Alex;Djuranovic, Sergej;Mitreva, Makedonka
Abstract

The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm’s excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum, which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum. The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential.

Journal

Pathogens

Publication Name

N/A

Volume

12

ISBN/ISSN

2076-0817

Edition

N/A

Issue

1

Pages Count

20

Location

N/A

Publisher

MDPI

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.3390/pathogens12010095