Remote sensing for cost-effective blue carbon accounting
Journal Publication ResearchOnline@JCUAbstract
Blue carbon ecosystems (BCE) include mangrove forests, tidal marshes, and seagrass meadows, all of which are currently under threat, putting their contribution to mitigating climate change at risk. Although certain challenges and trade-offs exist, remote sensing offers a promising avenue for transparent, replicable, and cost-effective accounting of many BCE at unprecedented temporal and spatial scales. The United Nations Framework Convention on Climate Change (UNFCCC) has issued guidelines for developing blue carbon inventories to incorporate into Nationally Determined Contributions (NDCs). Yet, there is little guidance on remote sensing techniques for monitoring, reporting, and verifying blue carbon assets. This review constructs a unified roadmap for applying remote sensing technologies to develop cost-effective carbon inventories for BCE – from local to global scales. We summarise and discuss (1) current standard guidelines for blue carbon inventories; (2) traditional and cutting-edge remote sensing technologies for mapping blue carbon habitats; (3) methods for translating habitat maps into carbon estimates; and (4) a decision tree to assist users in determining the most suitable approach depending on their areas of interest, budget, and required accuracy of blue carbon assessment. We designed this work to support UNFCCC-approved IPCC guidelines with specific recommendations on remote sensing techniques for GHG inventories. Overall, remote sensing technologies are robust and cost-effective tools for monitoring, reporting, and verifying blue carbon assets and projects. Increased appreciation of these techniques can promote a technological shift towards greater policy and industry uptake, enhancing the scalability of blue carbon as a Natural Climate Solution worldwide.
Journal
Earth-Science Reviews
Publication Name
N/A
Volume
238
ISBN/ISSN
1872-6828
Edition
N/A
Issue
N/A
Pages Count
16
Location
N/A
Publisher
Elsevier
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.earscirev.2023.104337