Interconnected Porous Structural Construction of Mn-and N-Doped Carbon Nanosheets for Fuel Cell Application
Journal Publication ResearchOnline@JCUAbstract
The lack of a cost-effective oxygen reduction reaction (ORR) catalyst is the key technical issue that restricts the large-scale application of proton-exchange membrane fuel cells (PEMFCs). Transition metal–Nx/C has exhibited promising potential to replace the precious Pt-based catalyst, and Mn–Nx/C is becoming the research hotspot as a result of the Fenton-inert property of Mn. To further improve the ORR activity of the Mn–Nx/C catalyst, a three-dimensional (3D) interconnected porous structure is constructed in two-dimensional Mn- and N-doped carbon nanosheets via a “porogen-in-resin” strategy. In combination with a post-adsorption treatment, the so-called 3D Mn–Nx/CS catalyst exhibits great ORR catalytic activity and stability under both acidic and alkaline conditions. The half-wave potential (E1/2) of 3D Mn–Nx/CS is high at 0.918 and 0.720 V under alkaline and acidic conditions, respectively. As a result, the practical PEMFC equipped with 3D Mn–Nx/CS possesses an open circuit voltage above 0.94 V and a maximum power density of 360 mW/cm2, showing a potential application prospect.
Journal
Energy & Fuels
Publication Name
N/A
Volume
36
ISBN/ISSN
1520-5029
Edition
N/A
Issue
15
Pages Count
7
Location
N/A
Publisher
American Chemical Society
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1021/acs.energyfuels.2c02061