Big events, little change: Extreme climatic events have no region-wide effect on Great Barrier Reef governance
Journal Publication ResearchOnline@JCUAbstract
Extreme climatic events trigger changes in ecosystems with potential negative impacts for people. These events may provide an opportunity for environmental managers and decision-makers to improve the governance of social-ecological systems, however there is conflicting evidence regarding whether these actors are indeed able to change governance after extreme climatic events. In addition, the majority of research to date has focused on changes in specific policies or organizations after crises. A broader investigation of governance actors’ activities is needed to more fully understand whether or not crises trigger change. Here we demonstrate the use of a social network analysis of management and decision-making forums (e.g. meetings, partnerships) to reveal the effects of an extreme climatic event on governance of the Great Barrier Reef over an eight-year period. To assess potential shifts in action, we examine the topics of forums and the relative participation and influence of diverse governance actors before, during, and after two back-to-back mass coral bleaching events in 2016 and 2017. Our analysis reveals that there is little change in the topics that receive attention, and in the relative participation and influence of different actor groups in the region. Our research demonstrates that network analysis of forums is useful for analyzing whether or not actors’ activities and priorities evolve over time. Our results provide empirical evidence that governance actors struggle to leverage extreme climate events as windows of opportunity and further research is needed to identify alternative opportunities to improve governance.
Journal
Journal of Environmental Management
Publication Name
N/A
Volume
320
ISBN/ISSN
1095-8630
Edition
N/A
Issue
N/A
Pages Count
12
Location
N/A
Publisher
Elsevier
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.jenvman.2022.115809