Deep Learning-aided TR-UWB MIMO System
Journal Publication ResearchOnline@JCUAbstract
This paper presents a novel deep learning-aided scheme dubbed PRρ-net for improving the bit error rate (BER) of the Time Reversal (TR) Ultra-Wideband (UWB) Multiple Input Multiple Output (MIMO) system with imperfect Channel State Information (CSI). The designed system employs Frequency Division Duplexing (FDD) with explicit feedback in a scenario where the CSI is subject to estimation and quantization errors. Imperfect CSI causes a drastic increase in BER of the FDD-based TR-UWB MIMO system, and we tackle this problem by proposing a novel neural network-aided design for the conventional precoder at the transmitter and equalizer at the receiver. A closed-form expression for the initial estimation of the channel correlation is derived by utilizing transmitted data in time-varying channel conditions modeled as a Markov process. Subsequently, a neural network-aided design is proposed to improve the initial estimate of channel correlation. An adaptive pilot transmission strategy for a more efficient data transmission is proposed that uses channel correlation information. The theoretical analysis of the model under the Gaussian assumptions is presented, and the results agree with the Monte-Carlo simulations. The simulation results indicate high performance gains when the suggested neural networks are used to combat the effect of channel imperfections.
Journal
IEEE Transactions on Communications
Publication Name
N/A
Volume
70
ISBN/ISSN
1558-0857
Edition
N/A
Issue
10
Pages Count
10
Location
N/A
Publisher
IEEE
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1109/TCOMM.2022.3199489