Strain localization and fluid-assisted deformation in apatite and its influence on trace elements and U–Pb systematics

Journal Publication ResearchOnline@JCU
Ribeiro, B.V.;Lagoeiro, L.;Faleiros, F.M.;Hunter, N.J.R.;Queiroga, G.;Raveggi, M.;Cawood, P.A.;Finch, M.;Campanha, G.A.C.
Abstract

This paper presents electron backscatter diffraction (EBSD), trace element and U–Pb data of apatite grains from a granitic mylonite from the Taxaquara Shear Zone (SE Brazil). The mylonite recrystallized under upper-greenschist facies and presents two types of apatite with distinct microstructures. Type-1 apatite appears in quartz-rich layers and does not exhibit any microstructural, crystallographic, or chemical evidence of deformation/recrystallization, and resembles the original igneous apatite. Type-2 apatite appears in mica-rich layers and exhibits core-and-mantle microstructures, and intragranular subgrain development, suggesting that they have undergone dynamic recrystallization. Recrystallized tails of type-2 apatite grains exhibit a strong c-axis crystallographic preferred orientation parallel to the X-direction (stretching lineation), and lack evidence of dislocation density. This evidence from type-2 apatite grains, combined with REE depletion, high La and a negative Ce anomaly compared to type-1 grains, suggests that type-2 apatite tails underwent recrystallization via dissolution-precipitation creep, whereas parental grains underwent crystal-plastic deformation and subgrain formation through dynamic recrystallization. Phase-equilibrium modelling and quartz CPO opening-angle thermometry are consistent with recrystallization at ∼480 – 530°C and 2.2 – 5.0 kbar. We were not able to determine precise deformation ages from type-2 apatite because fluid-assisted recrystallization appears to have substantially decreased the U/Pb ratio. We find that preferential fluid flow along high-strain, biotite-rich layers in the mylonite caused type-2 apatite to recrystallise, whereas type-1 apatite in low strain layers was unaffected and retained the characteristics of the protolith.

Journal

Earth and Planetary Science Letters

Publication Name

N/A

Volume

545

ISBN/ISSN

1385-013X

Edition

N/A

Issue

N/A

Pages Count

13

Location

N/A

Publisher

Elsevier

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1016/j.epsl.2020.116421