The rheology of polyvinylpyrrolidone-coated silica nanoparticles positioned at an air-aqueous interface

Journal Publication ResearchOnline@JCU
Yu, Kai;Zhang, Huagui;Biggs, Simon;Xu, Zhenghe;Cayre, Olivier J.;Harbottle, David
Abstract

Particle-stabilized emulsions and foams are widely encountered, as such there remains a concerted effort to better understand the relationship between the particle network structure surrounding droplets and bubbles, and the rheology of the particle-stabilized interface. Poly(vinylpyrrolidone)-coated silica nanoparticles were used to stabilize foams. The shear rheology of planar particle-laden interfaces were measured using an interfacial shear rheometer and the rheological properties measured as a function of the sub-phase electrolyte concentration and surface pressure. All particle-laden interfaces exhibited a liquid-like to solid-like transition with increasing surface pressure. The surface pressure-dependent interfacial rheology was then correlated to the formed micron-scale structures of the particle-laden interfaces which were imaged using a Brewster angle microscope. With the baseline knowledge established, foams were prepared using the same composite particles and the particle network structure imaged using cryo-SEM. An attempt has been made to correlate the two structures observed at a planar interface and that surrounding a bubble to elucidate the likely rheology of the bubble stabilizing particle network. Independent of the sub-phase electrolyte concentration, the resulting rheology of the bubble stabilizing particle network was strongly elastic and appeared to be in a compression state at the region of the L-S phase transition.

Journal

Journal of Colloid and Interface Science

Publication Name

N/A

Volume

527

ISBN/ISSN

1095-7103

Edition

N/A

Issue

N/A

Pages Count

10

Location

N/A

Publisher

Elsevier

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1016/j.jcis.2018.05.035