The potential for refining nitrogen fertiliser management through accounting for climate impacts: an exploratory study for the Tully region

Journal Publication ResearchOnline@JCU
Biggs, J.S.;Everingham, Y.;Skocaj, D.M.;Schroeder, B.L.;Sexton, J.;Thorburn, P.J.
Abstract

Increasing the precision of nitrogen (N) fertiliser management in cropping systems is integral to increasing the environmental and economic sustainability of cropping. In a simulation study, we found that natural variability in year-to-year climate had a major effect on optimum N fertiliser rates for sugarcane in the Tully region of northeastern Australia, where N discharges pose high risks to Great Barrier Reef ecosystems. There were interactions between climate and other factors affecting crop growth that made optimum N rates field-specific. The regional average optimum N fertiliser rate was substantially lower than current industry guidelines. Likewise, simulated N losses to the environment at optimum N fertiliser rates were substantially lower than the simulated losses at current industry fertiliser uidelines. Dissolved N discharged from rivers is related to fertiliser applications. If the reductions in N applications identified in the study occurred in the Tully region, the reduction in dissolved N discharges from rivers in the region would almost meet current water quality improvement targets. Whilst there were many assumptions made in this exploratory study, and there are many steps between the study and a practically implemented dynamic N fertiliser recommendation system, the potential environmental benefits justify field validation and further development of the concepts identified in the study.

Journal

Marine Pollution Bulletin

Publication Name

N/A

Volume

170

ISBN/ISSN

1879-3363

Edition

N/A

Issue

N/A

Pages Count

13

Location

N/A

Publisher

Elsevier

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1016/j.marpolbul.2021.112664