First-passage time theory of activated rate chemical processes in electronic molecular junctions

Journal Publication ResearchOnline@JCU
Preston, Riley J.;Gelin, Maxim F.;Kosov, Daniel S.
Abstract

Confined nanoscale spaces, electric fields, and tunneling currents make the molecular electronic junction an experimental device for the discovery of new out-of-equilibrium chemical reactions. Reaction-rate theory for current-activated chemical reactions is developed by combining the Keldysh nonequilibrium Green’s function treatment of electrons, Fokker–Planck description of the reaction coordinate, and Kramers first-passage time calculations. The nonequilibrium Green’s functions (NEGF) provide an adiabatic potential as well as a diffusion coefficient and temperature with local dependence on the reaction coordinate. Van Kampen’s Fokker–Planck equation, which describes a Brownian particle moving in an external potential in an inhomogeneous medium with a position-dependent friction and diffusion coefficient, is used to obtain an analytic expression for the first-passage time. The theory is applied to several transport scenarios: a molecular junction with a single reaction coordinate dependent molecular orbital and a model diatomic molecular junction. We demonstrate the natural emergence of Landauer’s blowtorch effect as a result of the interplay between the configuration dependent viscosity and diffusion coefficients. The resultant localized heating in conjunction with the bond-deformation due to current-induced forces is shown to be the determining factors when considering chemical reaction rates, each of which results from highly tunable parameters within the system.

Journal

Journal of Chemical Physics

Publication Name

N/A

Volume

154

ISBN/ISSN

1089-7690

Edition

N/A

Issue

N/A

Pages Count

11

Location

N/A

Publisher

American Institute of Physics

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1063/5.0045652