MemTorch: a simulation framework for deep memristive cross-bar architectures
Conference Publication ResearchOnline@JCUAbstract
Memristive devices arranged in cross-bar architectures have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems for deployment in resource-constrained platforms, such as the Internet-of-Things (IoT) edge devices. These cross-bar architectures can be used to implement various in-memory computing operations, such as Multiply-Accumulate (MAC) and convolution, which are used extensively in Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). Currently, there is a lack of an open source, general, high-level simulation platform that can fully integrate any behavioral or experimental memristive device model into cross-bar architectures. This paper presents such a framework named MemTorch, which integrates directly with the well-known PyTorch Machine Learning (ML) library. To demonstrate an example practical use of MemTorch, we use it to simulate the performance degradation that non-ideal devices introduce to a typical Memristive DNN (MDNN) implementing VGG-16 for CIFAR-10. Our open source 1 MemTorch framework can be used by circuit and system designers to conveniently build customized large-scale simulation platforms, as a preliminary step before circuit-level realization.
Journal
N/A
Publication Name
2020 IEEE International Symposium on Circuits and Systems (ISCAS)
Volume
N/A
ISBN/ISSN
978-1-7281-3320-1
Edition
N/A
Issue
N/A
Pages Count
5
Location
Seville, Spain
Publisher
Institute of Electrical and Electronics Engineers
Publisher Url
N/A
Publisher Location
Piscataway, NJ, USA
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1109/ISCAS45731.2020.9180810