Influence of microalgae on synergism during co-pyrolysis with organic waste biomass: a thermogravimetric and kinetic analysis

Journal Publication ResearchOnline@JCU
Vuppaladadiyam, Arun K.;Antunes, Elsa;Sanchez, Paula Blanco;Duan, Huabo;Zhao, Ming
Abstract

The synergistic influence of microalgae on the two forms of organic waste biomasses, namely biomass wastes (BW) and its digested form (DBW), during co-pyrolysis was evaluated based on the thermal decomposition behaviour, gas yields, extent of thermal decomposition and reaction kinetics. The biomasses and their blends were co-pyrolysed at three different heating rates (10, 15 and 20C/min) in a thermogravimetric analyzer coupled with a mass spectrometer. Initial assessment, based on TG-DTG data, revealed that the thermal degradation can be divided into three zones (50-150C, 150-550C and 550-800C) for all the biomasses and their blends. The thermogravimetric data was used to evaluate the kinetic triplet, which include apparent activation energy (Ea), pre-exponential factor (A) and reaction mechanism, f(a). Semi-quantitative method was used to quantify the gas species, H2, CO2 and CO were dominant species, implying the water gas reactions and oxidation reactions were predominant. The synergistic influence of microalgae was clearly evident in terms of reaction kinetics, as noted in the reduction in the apparent activation energy and increase in the total gas yields. The obtained kinetic triplet and thermodynamic parameters are expected to facilitate the design and optimization of co-pyrolysis of microalgae with other forms of organic wastes.

Journal

Renewable Energy

Publication Name

N/A

Volume

167

ISBN/ISSN

1879-0682

Edition

N/A

Issue

N/A

Pages Count

14

Location

N/A

Publisher

Elsevier

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1016/j.renene.2020.11.039