Mathematical analysis of a two-strain disease model with amplification
Journal Publication ResearchOnline@JCUAbstract
We investigate a two-strain disease model with amplification to simulate the prevalence of drug-susceptible (s) and drug-resistant (m) disease strains. Drug resistance first emerges when drug-susceptible strains mutate and become drug-resistant, possibly as a consequence of inadequate treatment, i.e. amplification. In this case, the drug-susceptible and drug-resistant strains are coupled. We perform a dynamical analysis of the resulting system and find that the model contains three equilibrium points: a disease-free equilibrium; a mono-existent disease-endemic equilibrium at which only the drug-resistant strain persists; and a co-existent disease-endemic equilibrium where both the drug-susceptible and drug-resistant strains persist. We found two basic reproduction numbers: one associated with the drug-susceptible strain ; the other with the drug-resistant strain and showed that at least one of the strains can spread in a population if . Furthermore, we also showed that if , the drug-susceptible strain dies out but the drug-resistant strain persists in the population (mono-existent equilibrium); however if , then both the drug-susceptible and drug-resistant strains persist in the population (co-existent equilibrium). We conducted a local stability analysis of the system equilibrium points using the Routh-Hurwitz conditions and a global stability analysis using appropriate Lyapunov functions. Sensitivity analysis was used to identify the key model parameters that drive transmission through calculation of the partial rank correlation coefficients (PRCCs). We found that the contact rate of both strains had the largest influence on prevalence. We also investigated the impact of amplification and treatment/recovery rates of both strains on the equilibrium prevalence of infection; results suggest that poor quality treatment/recovery makes coexistence more likely and increases the relative abundance of resistant infections.
Journal
N/A
Publication Name
N/A
Volume
143
ISBN/ISSN
1873-2887
Edition
N/A
Issue
N/A
Pages Count
10
Location
N/A
Publisher
Pergamon-Elsevier Science Ltd
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.chaos.2020.110594