Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal

Journal Publication ResearchOnline@JCU
Fogwill, C. J.;Turney, C. S. M.;Menviel, L.;Baker, A.;Weber, M. E.;Ellis, B.;Thomas, Z. A.;Golledge, N. R.;Etheridge, D.;Rubino, M.;Thornton, D. P.;van Ommen, T. D.;Moy, A. D.;Curran, M. A. J.;Davies, S.;Bird, M. I.;Munksgaard, N. C.;Rootes, C. M.;Millman, H.;Vohra, J.;Rivera, A.;Mackintosh, A.;Pike, J.;Hall, I. R.;Bagshaw, E. A.;Rainsley, E.;Bronk-Ramsey, C.;Montenari, M.;Cage, A. G.;Harris, M. R. P.;Jones, R.;Power, A.;Love, J.;Young, J.;Weyrich, L. S.;Cooper, A.
Abstract

Increased Southern Ocean productivity driven by sea-ice feedbacks contributed to a slowdown in rising CO(2)levels during the last deglaciation, according to analyses of marine-derived aerosols from an Antarctic ice core. The Southern Ocean occupies 14% of the Earth's surface and plays a fundamental role in the global carbon cycle and climate. It provides a direct connection to the deep ocean carbon reservoir through biogeochemical processes that include surface primary productivity, remineralization at depth and the upwelling of carbon-rich water masses. However, the role of these different processes in modulating past and future air-sea carbon flux remains poorly understood. A key period in this regard is the Antarctic Cold Reversal (ACR, 14.6-12.7 kyrbp), when mid- to high-latitude Southern Hemisphere cooling coincided with a sustained plateau in the global deglacial increase in atmospheric CO2. Here we reconstruct high-latitude Southern Ocean surface productivity from marine-derived aerosols captured in a highly resolved horizontal ice core. Our multiproxy reconstruction reveals a sustained signal of enhanced marine productivity across the ACR. Transient climate modelling indicates this period coincided with maximum seasonal variability in sea-ice extent, implying that sea-ice biological feedbacks enhanced CO(2)sequestration and created a substantial regional marine carbon sink, which contributed to the plateau in CO(2)during the ACR. Our results highlight the role Antarctic sea ice plays in controlling global CO2, and demonstrate the need to incorporate such feedbacks into climate-carbon models.

Journal

Nature Geoscience

Publication Name

N/A

Volume

13

ISBN/ISSN

1752-0908

Edition

N/A

Issue

N/A

Pages Count

12

Location

N/A

Publisher

Nature Publishing Group

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1038/s41561-020-0587-0