Impaired growth and survival of tropical macroalgae (Sargassum spp.) at elevated temperatures

Journal Publication ResearchOnline@JCU
Graba-Landry, Alexia C.;Loffler, Zoe;McClure, Eva C.;Pratchett, Morgan S.;Hoey, Andrew S.
Abstract

Increasing ocean temperatures associated with ongoing climate change have resulted in regional reductions in the cover of live coral and increasing concerns that coral reefs will be overgrown by macroalgae. The likelihood of macroalgal overgrowth will, however, depend on the thermal sensitivities of the macroalgae themselves. We exposed recently settled propagules of the common canopy-forming macroalga Sargassum swartzii and adult thalli of three species of Sargassum (S. swatzii, S. cristaefolium, S. polycystum) to three experimental temperatures: ambient, + 2 degrees C, and + 3.5 degrees C, reflective of summer minimum, mean, and maximum temperatures for the region. Growth and survival of Sargassum swartzii propagules were assessed over 48 days, and the growth, physical toughness, elemental composition, and susceptibility to herbivory of adult thalli were assessed after short-term exposure (2-weeks) to experimental temperatures. Growth and survival of S. swartzii propagules were reduced by 43% and 84%, respectively, when cultured at the elevated (+ 3.5 degrees C) temperature compared to ambient temperature. Similarly, elevated temperature resulted in a 17-49% decline in the growth of adult Sargassum thalli relative to controls. Susceptability of S. swartzii and S. cristaefolium to herbivory (i.e. mass removed by herbivores) was 50% less for thalli cultured at elevated (+ 3.5 degrees C) compared to ambient temperature, but this pattern was not related to changes in the physical or chemical properties of the thalli as a result of elevated temperature. The negative effects of elevated temperatures on the growth and survival of both Sargassum propagules and adult thalli will likely restrict the capacity of Sargassum, and potentially other macroalgae, to establish in new areas, and may also threaten the persistence of existing macroalgal meadows under future ocean temperatures. The thermal sensitivities of tropical Sargassum, together with those of corals, suggest ongoing ocean warming may lead to novel reef ecosystems that are low in both coral cover and macroalgal cover.

Journal

Coral Reefs

Publication Name

N/A

Volume

339

ISBN/ISSN

1432-0975

Edition

N/A

Issue

N/A

Pages Count

N/A

Location

N/A

Publisher

Springer

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1007/s00338-020-01909-7