Validity of the method of fragments for seepage analysis in circular cofferdams

Journal Publication ResearchOnline@JCU
Madanayaka, Thushara Asela;Sivakugan, Nagaratnam
Abstract

The method of fragments (MoF) is a simple solution method for confined seepage problems. MoF based seepage solutions have been proposed and validated in the literature on cofferdams analyzed in the 2D Cartesian plane (i.e., double-walled cofferdams). More recently, this method has been extended by the authors for determining the flow rate and exit hydraulic gradient for axisymmetric cases (circular cofferdams). The accuracy of the MoF solutions for circular cofferdams relies on the assumption that the equipotential surface along the cofferdam perimeter at the tip of the cut-off wall is vertical. Therefore, in the first part of the paper, the validity of this assumption and the effect of any deviation on the seepage solutions for circular cofferdams were studied. For that, series of circular cofferdam geometries were studied using numerical simulations, and then the seepage solutions (flow rate and exit hydraulic gradient values) obtained were compared with corresponding MoF solutions. It shows that the MoF solutions are conservative in all the cases and also the error is limited to 10% for most of the cases. In the second part of the paper, an attempt is made to simplify the MoF solutions, further developing expressions for the form factors of the two fragments and the exit hydraulic gradient without relying on the graphical solutions proposed by the authors. The equations presented herein enable the MoF to be implemented in spreadsheet and hence be used as an effective tool for parametric studies.

Journal

Geotechnical and Geological Engineering

Publication Name

N/A

Volume

38

ISBN/ISSN

1573-1529

Edition

N/A

Issue

N/A

Pages Count

19

Location

N/A

Publisher

Springer

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1007/s10706-019-01111-9