Detachment of Porites cylindrica nubbins by herbivorous fishes

Journal Publication ResearchOnline@JCU
Quimpo, Timothy J.R.;Cabaitan, Patrick C.;Hoey, Andrew S.
Abstract

A form of active restoration for coral assemblages involves culturing coral nubbins at nursery sites before transplantation to recipient reefs. Incidental grazing and/or directed predation by local fish assemblages are major sources of dislodgement and mortality for coral nubbins in nurseries. However, the rate of coral nubbin detachment, how this varies across fish taxa, and whether nubbin size affects rates of detachment warrant further investigation. We used field and aquaria experiments to examine the effect of incidental grazing and predation on the detachment of Porites cylindrica nubbins of different sizes (0.5, 1, 2, 3, 4, and 5 cm height). Short-term (6 hours) exposure of nubbins to local fish assemblages at Lucero Reef, northwestern Philippines, caused higher detachment (1.93% ± 0.53 SE) compared to caged controls (0.16% ± 0.16 SE), with no detectable effect of nubbin size. To identify the impact of individual fish species, nubbins were exposed to one of four locally abundant herbivorous and corallivorous fish species in aquaria for 8 hours. Nubbin detachment was greater when exposed to Chlorurus spilurus (1.20–36.2%) and Siganus fuscescens (0.00–15.0%) than Chaetodon lunulatus (0.00–4.00%) and Chaetodon kleinii (0.00–1.20%), with the smallest nubbins (0.5 cm) being the most vulnerable. Our results suggest that incidental grazing by herbivorous fishes, especially parrotfishes, may potentially be an important source of detachment and likely mortality of nubbins. Optimizing coral nursery protocols should consider potential trade-offs between excluding grazing fishes and the accumulation of algal material on caging structures to minimize nubbin mortality and improve coral restoration success.

Journal

Restoration Ecology

Publication Name

N/A

Volume

28

ISBN/ISSN

1526-100X

Edition

N/A

Issue

2

Pages Count

9

Location

N/A

Publisher

Wiley-Blackwell

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1111/rec.13091