Electrically insulating plasma polymer/ZnO composite films

Journal Publication ResearchOnline@JCU
Al-Jumaili, Ahmed;Kumar, Avishek;Bazaka, Kateryna;Jacob, Mohan V.
Abstract

In this report, the electrical properties of plasma polymer films functionalized with ZnO nanoparticles were investigated with respect to their potential applications in biomaterials and microelectronics fields. The nanocomposite films were produced using a single-step method that combines simultaneous plasma polymerization of renewable geranium essential oil with thermal decomposition of zinc acetylacetonate Zn(acac)₂. The input power used for the deposition of composites were 10Wand 50W, and the resulting composite structures were abbreviated as Zn/Ge 10Wand Zn/Ge 50W, respectively. The electrical properties of pristine polymers and Zn/polymer composite films were studied in metal-insulator-metal structures. At a quantity of ZnO of around ~1%, it was found that ZnO had a small influence on the capacitance and dielectric constants of thus-fabricated films. The dielectric constant of films with smaller-sized nanoparticles exhibited the highest value, whereas, with the increase in ZnO particle size, the dielectric constant decreases. The conductivity of the composites was calculated to be in the in the range of 10⁻¹⁴-10⁻¹⁵ Ω⁻¹ m⁻¹, significantly greater than that for the pristine polymer, the latter estimated to be in the range of 10⁻¹⁶-10⁻¹⁷ Ω⁻¹ m⁻¹.

Journal

Materials

Publication Name

N/A

Volume

12

ISBN/ISSN

1996-1944

Edition

N/A

Issue

19

Pages Count

12

Location

N/A

Publisher

MDPI Publishers

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.3390/ma12193099