Cetacean bycatch in Indian Ocean tuna gillnet fisheries

Journal Publication ResearchOnline@JCU
Anderson, R Charles;Herrera, Miguel;Ilangakoon, Anoukchika D.;Koya, K.M.;Moazzam, M.;Mustika, Putu L.;Sutaria, Dipani N.
Abstract

Pelagic gillnet (driftnet) fisheries account for some 34% of Indian Ocean tuna catches. We combined published results from 10 bycatch sampling programmes (1981−2016) in Australia, Sri Lanka, India and Pakistan to estimate bycatch rates for cetaceans across all Indian Ocean tuna gillnet fisheries. Estimated cetacean bycatch peaked at almost 100 000 ind. yr−1 during 2004−2006, but has declined by over 15% since then, despite an increase in tuna gillnet fishing effort. These fisheries caught an estimated cumulative total of 4.1 million small cetaceans between 1950 and 2018. These bycatch estimates take little or no account of cetaceans caught by gillnet but not landed, of delayed mortality or sub-lethal impacts on cetaceans (especially whales) that escape from gillnets, of mortality associated with ghost nets, of harpoon catches made from gillnetters, or of mortality from other tuna fisheries. Total cetacean mortality from Indian Ocean tuna fisheries may therefore be substantially higher than estimated here. Declining cetacean bycatch rates suggest that such levels of mortality are not sustainable. Indeed, mean small cetacean abundance may currently be 13% of pre-fishery levels. None of these estimates are precise, but they do demonstrate the likely order of magnitude of the issue. Countries with the largest current gillnet catches of tuna, and thus the ones likely to have the largest cetacean bycatch are (in order): Iran, Indonesia, India, Sri Lanka, Pakistan, Oman, Yemen, UAE and Tanzania. These 9 countries together may account for roughly 96% of all cetacean bycatch from tuna gillnet fisheries across the Indian Ocean.

Journal

Endangered Species Research

Publication Name

N/A

Volume

41

ISBN/ISSN

1613-4796

Edition

N/A

Issue

N/A

Pages Count

15

Location

N/A

Publisher

Inter-Research

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.3354/esr01008