Preparation and lithium storage properties of C@TiO₂/3D carbon hollow sphere skeleton composites

Journal Publication ResearchOnline@JCU
Zhang, Yufei;Zhang, Na;Chen, Jin;Zhang, Tiezhu;Ge, Wenqing;Zhang, Weimin;Xie, Gang;Zhang, Lipeng;He, Yinghe
Abstract

Rational design and facile synthesis of hybrid TiO₂ anode materials with high electrical conductivity and ionic accessibility are urgently desired to construct high performance litium-ion batteries. In this work, We first utilize conductive hollow porous pollen carbon microsphere as skeleton to load C@TiO₂ nanoparticles. The C@TiO₂/3D pollen carbon (CTPC) composite with hollow porous structure has been successfully developed via a simple method. As a result, CTPC-700 (calcination temperature of 700°C) electrode material exhibits superior electrochemical performance for lithium ion batteries, delivering an outstanding specific capacity of 148 mA h g(⁻¹) up to 1000 cycles at 5.0C and a superior high-rate performance of 112 mA h g(⁻¹) at 10.0C. Therefore, the special structure of the as-prepared composites can improve the stability of the electrode and enhance its electrochemical performance, which is promising for the next-generation of lithium-ion batteries.

Journal

Journal of Alloys and Compounds

Publication Name

N/A

Volume

815

ISBN/ISSN

1873-4669

Edition

N/A

Issue

N/A

Pages Count

8

Location

N/A

Publisher

Elsevier

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1016/j.jallcom.2019.152511