Preparation and lithium storage properties of C@TiO₂/3D carbon hollow sphere skeleton composites
Journal Publication ResearchOnline@JCUAbstract
Rational design and facile synthesis of hybrid TiO₂ anode materials with high electrical conductivity and ionic accessibility are urgently desired to construct high performance litium-ion batteries. In this work, We first utilize conductive hollow porous pollen carbon microsphere as skeleton to load C@TiO₂ nanoparticles. The C@TiO₂/3D pollen carbon (CTPC) composite with hollow porous structure has been successfully developed via a simple method. As a result, CTPC-700 (calcination temperature of 700°C) electrode material exhibits superior electrochemical performance for lithium ion batteries, delivering an outstanding specific capacity of 148 mA h g(⁻¹) up to 1000 cycles at 5.0C and a superior high-rate performance of 112 mA h g(⁻¹) at 10.0C. Therefore, the special structure of the as-prepared composites can improve the stability of the electrode and enhance its electrochemical performance, which is promising for the next-generation of lithium-ion batteries.
Journal
Journal of Alloys and Compounds
Publication Name
N/A
Volume
815
ISBN/ISSN
1873-4669
Edition
N/A
Issue
N/A
Pages Count
8
Location
N/A
Publisher
Elsevier
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.jallcom.2019.152511