Dose-dependent morbidity of freshwater turtle hatchlings, Emydura macquarii krefftii, inoculated with Ranavirus isolate (Bohle iridovirus, Iridoviridae)

Journal Publication ResearchOnline@JCU
Wirth, Wytamma;Schwarzkopf, Lin;Skerratt, Lee F.;Tzamouzaki, Anna;Ariel, Ellen
Abstract

Ranaviral infections cause mass die-offs in wild and captive turtle populations. Two experimental studies were performed to first determine the susceptibility of an Australian turtle species (Emydura macquarii krefftii) to different routes of infection and second examine the effect of viral titre on the morbidity in hatchlings. All inoculation routes (intracoelomic, intramuscular and oral) produced disease, but the clinical signs, histopathology and time to onset of disease varied with the route. The median infectious and lethal doses for intramuscularly inoculated hatchlings were 10(2.52) ((1.98-2.93)) and 10(4.43) ((3.81-5.19)) TCID50 ml(-1), respectively. Clinical signs began 14 to 29 days post-inoculation and the median survival time was 22 days (16-25) across all dose groups. For every 10-fold increase in dose, the odds of developing any clinical signs or severe clinical signs increased by 3.39 [P<0.01, 95 % confidence interval (CI): 1.81-6.36] and 3.71 (P<0.01, 95 % CI: 1.76-7.80), respectively. Skin lesions, previously only reported in ranaviral infection in lizards, were observed in the majority of intramuscularly inoculated hatchlings that developed ranaviral disease. The histological changes were consistent with those in previous reports for reptiles and consisted of necrosis at or near the site of injection, in the spleen, liver and oral cavity. Systemic inflammation was also observed, predominantly affecting necrotic organs. The estimates reported here can be used to model ranaviral disease and quantify and manage at-risk populations.

Journal

Journal of General Virology

Publication Name

N/A

Volume

100

ISBN/ISSN

1465-2099

Edition

N/A

Issue

10

Pages Count

11

Location

N/A

Publisher

Society for General Microbiology

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1099/jgv.0.001324