Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
Journal Publication ResearchOnline@JCUAbstract
Photovoltaic power generation forecasting is an important topic in the field of sustainable power system design, energy conversion management, and smart grid construction. Difficulties arise while the generated PV power is usually unstable due to the variability of solar irradiance, temperature, and other meteorological factors. In this paper, a hybrid ensemble deep learning framework is proposed to forecast short-term photovoltaic power generation in a time series manner. Two LSTM neural networks are employed working on temperature and power outputs forecasting, respectively. The forecasting results are flattened and combined with a fully connected layer to enhance forecasting accuracy. Moreover, we adopted the attention mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant in forecasting. Comprehensive experiments are conducted with recently collected real-world photovoltaic power generation datasets. Three error metrics were adopted to compare the forecasting results produced by attention LSTM model with state-of-art methods, including the persistent model, the auto-regressive integrated moving average model with exogenous variable (ARIMAX), multi-layer perceptron (MLP), and the traditional LSTM model in all four seasons and various forecasting horizons to show the effectiveness and robustness of the proposed method.
Journal
IEEE Access
Publication Name
N/A
Volume
7
ISBN/ISSN
2169-3536
Edition
N/A
Issue
N/A
Pages Count
12
Location
N/A
Publisher
Institute of Electrical and Electronics Engineers
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1109/ACCESS.2019.2923006