Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism

Journal Publication ResearchOnline@JCU
Zhou, Hangxia;Zhang, Yujin;Yang, Lingfan;Liu, Congqiang;Yan, Ke;Du, Yang
Abstract

Photovoltaic power generation forecasting is an important topic in the field of sustainable power system design, energy conversion management, and smart grid construction. Difficulties arise while the generated PV power is usually unstable due to the variability of solar irradiance, temperature, and other meteorological factors. In this paper, a hybrid ensemble deep learning framework is proposed to forecast short-term photovoltaic power generation in a time series manner. Two LSTM neural networks are employed working on temperature and power outputs forecasting, respectively. The forecasting results are flattened and combined with a fully connected layer to enhance forecasting accuracy. Moreover, we adopted the attention mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant in forecasting. Comprehensive experiments are conducted with recently collected real-world photovoltaic power generation datasets. Three error metrics were adopted to compare the forecasting results produced by attention LSTM model with state-of-art methods, including the persistent model, the auto-regressive integrated moving average model with exogenous variable (ARIMAX), multi-layer perceptron (MLP), and the traditional LSTM model in all four seasons and various forecasting horizons to show the effectiveness and robustness of the proposed method.

Journal

IEEE Access

Publication Name

N/A

Volume

7

ISBN/ISSN

2169-3536

Edition

N/A

Issue

N/A

Pages Count

12

Location

N/A

Publisher

Institute of Electrical and Electronics Engineers

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1109/ACCESS.2019.2923006