Decomposition of ferrocene on Pt(111) and its effect on molecular electronic junctions

Journal Publication ResearchOnline@JCU
Reimers, Jeffrey R.;Wang, Yin;Kosov, Daniel S.
Abstract

From dilute vapor, ferrocene encountering Pt(111) decomposes, producing bound cyclopentadienyl rings, in contrast to its legendary stability in solution electrochemistry. We propose that decomposition occurs through initial chemisorption, making a Pt−C bond to a ferrocenium hydride, followed by step-edge catalyzed decomposition leading to migration of the Fe atom inside the Pt bulk. These conclusions are based on results from density functional theory (DFT) calculations. When Pt(111) approaches ferrocene tethered to a self-assembled monolayer, only the first, spontaneous but mechanically reversible chemisorption is predicted. Nonequilibrium Green's function calculations utilizing DFT predict that chemisorption increases molecular junction conductivities by a factor of 2−5. This could contribute to the extremely high conductivities observed in junctions supporting rectification up to unprecedented high-frequency cutoffs of ∼520 GHz, though squashed junctions at half monolayer coverage are predicted to conduct 104 times better.

Journal

Journal of Physical Chemistry Part C

Publication Name

N/A

Volume

123

ISBN/ISSN

1932-7455

Edition

N/A

Issue

N/A

Pages Count

6

Location

N/A

Publisher

American Chemical Society

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1021/acs.jpcc.9b02628