Multi-step short-term power consumption forecasting with a hybrid deep learning strategy

Journal Publication ResearchOnline@JCU
Yan, Ke;Wang, Xudong;Du, Yang;Jin, Ning;Huang, Haichao;Zhou, Hangxia
Abstract

Electric power consumption short-term forecasting for individual households is an important and challenging topic in the fields of AI-enhanced energy saving, smart grid planning, sustainable energy usage and electricity market bidding system design. Due to the variability of each household’s personalized activity, difficulties exist for traditional methods, such as auto-regressive moving average models, machine learning methods and non-deep neural networks, to provide accurate prediction for single household electric power consumption. Recent works show that the long short term memory (LSTM) neural network outperforms most of those traditional methods for power consumption forecasting problems. Nevertheless, two research gaps remain as unsolved problems in the literature. First, the prediction accuracy is still not reaching the practical level for real-world industrial applications. Second, most existing works only work on the one-step forecasting problem; the forecasting time is too short for practical usage. In this study, a hybrid deep learning neural network framework that combines convolutional neural network (CNN) with LSTM is proposed to further improve the prediction accuracy. The original short-term forecasting strategy is extended to a multi-step forecasting strategy to introduce more response time for electricity market bidding. Five real-world household power consumption datasets are studied, the proposed hybrid deep learning neural network outperforms most of the existing approaches, including auto-regressive integrated moving average (ARIMA) model, persistent model, support vector regression (SVR) and LSTM alone. In addition, we show a k-step power consumption forecasting strategy to promote the proposed framework for real-world application usage.

Journal

Energies

Publication Name

N/A

Volume

11

ISBN/ISSN

1996-1073

Edition

N/A

Issue

N/A

Pages Count

15

Location

N/A

Publisher

MDPDI

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.3390/en11113089