Eco-friendly nanocomposites derived from geranium oil and zinc oxide in one step approach

Journal Publication ResearchOnline@JCU
Al-Jumaili, Ahmed;Mulvey, Peter;Kumar, Avishek;Prasad, Karthika;Bazaka, Kateryna;Warner, Jeffrey;Jacob, Mohan V.
Abstract

Nanocomposites offer attractive and cost-effective thin layers with superior properties for antimicrobial, drug delivery and microelectronic applications. This work reports single-step plasmaenabled synthesis of polymer/zinc nanocomposite thin films via co-deposition of renewable geranium essential oil-derived polymer and zinc nanoparticles produced by thermal decomposition of zinc acetylacetonate. The chemical composition, surfaces characteristics and antimicrobial performance of the designed nanocomposite were systematically investigated. XPS survey proved the presence of ZnO in the matrix of formed polymers at 10 W and 50 W. SEM images verified that the average size of a ZnO nanoparticle slightly increased with an increase in the power of deposition, from approximately 60 nm at 10 W to approximately 80 nm at 50 W. Confocal scanning laser microscopy images showed that viability of S. aureus and E. coli cells significantly reduced on surfaces of ZnO/polymer composites compared to pristine polymers. SEM observations further demonstrated that bacterial cells incubated on Zn/Ge 10 W and Zn/Ge 50 W had deteriorated cell walls, compared to pristine polymers and glass control. The release of ZnO nanoparticles from the composite thin films was confirmed using ICP measurements, and can be further controlled by coating the film with a thin polymeric layer. These ecofriendly nanocomposite films could be employed as encapsulation coatings to protect relevant surfaces of medical devices from microbial adhesion and colonization.

Journal

Scientific Reports

Publication Name

N/A

Volume

9

ISBN/ISSN

2045-2322

Edition

N/A

Issue

N/A

Pages Count

16

Location

N/A

Publisher

Nature Publishing Group

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1038/s41598-019-42211-z