Coupled elastic membranes model for quantum heat transport in semiconductor nanowires

Journal Publication ResearchOnline@JCU
Lawn, Julian A.;Kosov, Daniel S.
Abstract

Presented here is a nanowire model, consisting of coupled elastic membranes with the purpose of investigating thermal transport in quasi-one-dimensional quantum systems. The vibrations of each elastic membrane are quantized and the flow of the vibrational energy between adjacent membranes is allowed. The ends of the nanowire are attached to thermal baths held at different temperatures. We derived quantum master equation for energy flow across the nanowire and obtained thermal currents and other key observables. We study the effects of a disordered boundary on the thermal current by randomizing the membrane radii. We evaluate the model as a nanowire analogue as well as study the effects of a disordered boundary on thermal conductivity. The calculations show that the membrane lattice model demonstrates diameter phonon confinement and a severe reduction in thermal conductivity due to surface roughness which is characteristic of semiconductor nanowires. The surface roughness also produces a length dependence of the thermal conductivity of the form κ = αLβ, with β dependent on disorder characteristics, in the otherwise ballistic regime. Finally, the parameters of the model are fitted to available experimental data for silicon nanowires and the results of the calculations are assessed against the experimental data.

Journal

European Physical Journal B: Condensed Matter and Complex Systems

Publication Name

N/A

Volume

92

ISBN/ISSN

1434-6036

Edition

N/A

Issue

2

Pages Count

12

Location

N/A

Publisher

Springer

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1140/epjb/e2019-90629-5