Settlement patterns of corals and other benthos on reefs with divergent environments and disturbances histories around the northeastern Arabian Peninsula

Journal Publication ResearchOnline@JCU
Bento, Rita;Feary, David A.;Hoey, Andrew S.;Burt, John A.
Abstract

Larval supply is a principal factor determining the establishment, structure, and diversity of sessile benthic assemblages on coral reefs. Benthic reef communities in north-eastern Arabia have been subject to recurrent disturbances in recent years, and subsequent recovery will be, in part, driven by variation in the supply of available colonists. Using settlement tiles deployed seasonally over 1 year at eight sites encompassing three environmentally divergent regions (southern Arabian Gulf, the Musandam Peninsula in the Strait of Hormuz, and the Sea of Oman) we assessed spatial and seasonal variability in settlement of benthic reef organisms. There was strong spatial variation in composition of new colonists among regions, mainly driven by the high abundance of coralline algae in the Arabian Gulf, colonial ascidians on the Musandam Peninsula and barnacles in the Sea of Oman. Seasonal differences in composition of new colonists were less important than regional differences, with seasonal variation in settlement not consistent among regions. The number of corals settling to the tiles was low compared to those reported for other regions, with mean densities ranging from 0 corals m -2 year -1 in the Sea of Oman to 30 (± 0.6 SE) and 38 (± 0.5 SE) in Musandam and the Arabian Gulf, respectively. Peak coral settlement abundance in the Gulf occurred in summer and autumn and in Musandam in spring (averaging 82 and 70 settlers m -2 year -1 , respectively, during the peak settlement season). This work provides the first record of large-scale spatial and seasonal patterns of settlement in north-eastern Arabia and provides valuable information on the supply of settlers available to recolonize heavily disturbed reefs in this region. The extremely low rates of coral settlement suggest that these marginal reefs are likely to be extremely slow to recover from on-going and future disturbances.

Journal

Frontiers in Marine Science

Publication Name

N/A

Volume

4

ISBN/ISSN

2296-7745

Edition

N/A

Issue

N/A

Pages Count

12

Location

N/A

Publisher

Frontiers Research Foundation

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.3389/fmars.2017.00305