Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
Journal Publication ResearchOnline@JCUAbstract
Spatio-temporal periodic pattern mining is to find temporal regularities for interesting places. Many real world spatio-temporal phenomena present sequential and hierarchical nature. However, traditional spatio-temporal periodic pattern mining ignores the consideration of sequence, and fails to take into account inherent hierarchy. This paper proposes a hierarchical trajectory clustering based periodic pattern mining that overcomes the two common drawbacks from traditional approaches: hierarchical reference spots and consideration of sequence. We propose a new trajectory clustering algorithm which considers semantic spatio-temporal information such as direction, speed and time based on Traclus and present comparative experimental results with three popular clustering methods: Kernel function, Grid-based, and Traclus. We further extend the proposed trajectory clustering to hierarchical clustering with the use of the single linkage approach to generate a hierarchy of reference spots. Experimental results reveal various hierarchical periodic patterns, and demonstrate that our algorithm outperforms traditional reference spot detection algorithms.
Journal
Expert Systems with Applications
Publication Name
N/A
Volume
92
ISBN/ISSN
1873-6793
Edition
N/A
Issue
N/A
Pages Count
11
Location
N/A
Publisher
Elsevier
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.eswa.2017.09.040