Changes in predator exposure, but not diet induce phenotypic plasticity in scorpion venom

Journal Publication ResearchOnline@JCU
Gangur, Alexander;Smout, Michael;Liddell, Michael;Seymour, Jamie;Wilson, David;Northfield, Tobin
Abstract

Animals embedded between trophic levels must simultaneously balance pressures to deter predators and acquire resources. Venomous animals may use venom toxins to mediate both pressures, and thus changes in this balance may alter the composition of venoms. Basic theory suggests that greater exposure to a predator should induce a larger proportion of defensive venom components relative to offensive venom components, while increases in arms races with prey will elicit the reverse. Alternatively, reducing the need for venom expenditure for food acquisition, for example due to an increase in scavenging, may reduce the production of offensive venom components. Here, we investigated changes in scorpion venom composition using a mesocosm experiment where we manipulated scorpions’ exposure to a surrogate vertebrate predator and live and dead prey. After six weeks, scorpions exposed to surrogate predators exhibited significantly different venom chemistry compared to naïve scorpions. This change included a relative increase in some compounds toxic to vertebrate cells, and a relative decrease in some compounds effective against their invertebrate prey. Our findings provide, to our knowledge, the first evidence for adaptive plasticity in venom composition. These changes in venom composition may increase the stability of food webs involving venomous animals.

Journal

N/A

Publication Name

N/A

Volume

284

ISBN/ISSN

1471-2954

Edition

N/A

Issue

1863

Pages Count

9

Location

N/A

Publisher

Royal Society Publishing

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1098/rspb.2017.1364