Rasgrp1 mutation increases naïve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios⁺ T cells and autoantibodies
Journal Publication ResearchOnline@JCUAbstract
Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1ᴬⁿᵃᵉᶠ, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1ᴬⁿᵃᵉᶠ mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios⁺ PD-1⁺ CD4⁺ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1ᴬⁿᵃᵉᶠ is mostly normal in vivo, although CD44 is overexpressed on naïve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1ᴬⁿᵃᵉᶠ naïve CD4⁺ T cells. CD44 expression, CD4⁺ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1ᴬⁿᵃᵉᶠMtorᶜʰⁱⁿᵒ double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1ᴬⁿᵃᵉᶠ T cell dysregulation.
Journal
eLife
Publication Name
N/A
Volume
2
ISBN/ISSN
2050-084X
Edition
N/A
Issue
N/A
Pages Count
26
Location
N/A
Publisher
eLife Sciences
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.7554/eLife.01020