Candida colonization as a risk marker for invasive candidiasis in mixed medical-surgical intensive care units: development and evaluation of a simple, standard protocol

Journal Publication ResearchOnline@JCU
Lau, Anna F.;Kabir, Masrura;Chen, Sharon C.-A.;Playford, E. Geoffrey;Marriott, Deborah J.;Jones, Michael;Lipman, Jeffrey;McBryde, Emma;Gottlieb, Thomas;Cheung, Winston;Seppelt, Ian;Iredell, Jonathan;Sorrell, Tania C.
Abstract

Colonization with Candida species is an independent risk factor for invasive candidiasis (IC), but the minimum and most practicable parameters for prediction of IC have not been optimized. We evaluated Candida colonization in a prospective cohort of 6,015 nonneutropenic, critically ill patients. Throat, perineum, and urine were sampled 72 h post-intensive care unit (ICU) admission and twice weekly until discharge or death. Specimens were cultured onto chromogenic agar, and a subset underwent molecular characterization. Sixty-three (86%) patients who developed IC were colonized prior to infection; 61 (97%) tested positive within the first two time points. The median time from colonization to IC was 7 days (range, 0 to 35). Colonization at any site was predictive of IC, with the risk of infection highest for urine colonization (relative risk [RR] = 2.25) but with the sensitivity highest (98%) for throat and/or perineum colonization. Colonization of ≥2 sites and heavy colonization of ≥1 site were significant independent risk factors for IC (RR = 2.25 and RR = 3.7, respectively), increasing specificity to 71% to 74% but decreasing sensitivity to 48% to 58%. Molecular testing would have prompted a resistance-driven decision to switch from fluconazole treatment in only 11% of patients infected with C. glabrata, based upon species-level identification alone. Positive predictive values (PPVs) were low (2% to 4%) and negative predictive values (NPVs) high (99% to 100%) regardless of which parameters were applied. In the Australian ICU setting, culture of throat and perineum within the first two time points after ICU admission captures 84% (61/73 patients) of subsequent IC cases. These optimized parameters, in combination with clinical risk factors, should strengthen development of a setting-specific risk-predictive model for IC.

Journal

Journal of Clinical Microbiology

Publication Name

N/A

Volume

53

ISBN/ISSN

1098-660X

Edition

N/A

Issue

4

Pages Count

7

Location

N/A

Publisher

American Society for Microbiology

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1128/JCM.03239-14