Microwave extraction–isotope ratio infrared spectroscopy (ME-IRIS): a novel technique for rapid extraction and in-line analysis of δ18O and δ2H values of water in plants, soils and insects
Journal Publication ResearchOnline@JCUAbstract
RATIONALE: Traditionally, stable isotope analysis of plant and soil water has been a technically challenging, labour-intensive and time-consuming process. Here we describe a rapid single-step technique which combines Microwave Extraction with Isotope Ratio Infrared Spectroscopy (ME-IRIS). METHODS: Plant, soil and insect water is extracted into a dry air stream by microwave irradiation within a sealed vessel. The water vapor thus produced is carried to a cooled condensation chamber, which controls the water vapor concentration and flow rate to the spectrometer. Integration of the isotope signals over the whole analytical cycle provides quantitative δ18O and δ2H values for the initial liquid water contained in the sample. Calibration is carried out by the analysis of water standards using the same apparatus. Analysis of leaf and soil water by cryogenic vacuum distillation and IRMS was used to validate the ME-IRIS data. RESULTS: Comparison with data obtained by cryogenic distillation and IRMS shows that the new technique provides accurate water isotope data for leaves from a range of field-grown tropical plant species. However, two exotic nursery plants were found to suffer from spectral interferences from co-extracted organic compounds. The precision for extracted leaf, stem, soil and insect water was typically better than ±0.3 ‰ for δ18O and ±2 ‰ for δ2H values, and better than ±0.1 ‰ for δ18O and ±1 ‰ for δ2H values when analyzing water standards. The effects of sample size, microwave power and duration and sample-to-sample memory on isotope values were assessed. CONCLUSIONS: ME-IRIS provides rapid and low-cost extraction and analysis of δ18O and δ2H values in plant, soil and insect water (≈10–15 min for samples yielding ≈ 0.3 mL of water). The technique can accommodate whole leaves of many plant species.
Journal
Rapid Communications in Mass Spectrometry
Publication Name
N/A
Volume
28
ISBN/ISSN
1097-0231
Edition
N/A
Issue
20
Pages Count
11
Location
N/A
Publisher
Wiley-Blackwell
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1002/rcm.7005