Probing of a human proteome microarray with a recombinant pathogen protein reveals a novel mechanism by which hookworms suppress B-cell receptor signaling
Journal Publication ResearchOnline@JCUAbstract
Na-ASP-2 is an efficacious hookworm vaccine antigen. However, despite elucidation of its crystal structure and studies addressing its immunobiology, the function of Na-ASP-2 has remained elusive. We probed a 9000-protein human proteome microarray with Na-ASP-2 and showed binding to CD79A, a component of the B-cell antigen receptor complex. Na-ASP-2 bound to human B lymphocytes ex vivo and downregulated the transcription of approximately 1000 B-cell messenger RNAs (mRNAs), while only approximately 100 mRNAs were upregulated, compared with control-treated cells. The expression of a range of molecules was affected by Na-ASP-2, including factors involved in leukocyte transendothelial migration pathways and the B-cell signaling receptor pathway. Of note was the downregulated transcription of lyn and pi3k, molecules that are known to interact with CD79A and control B-cell receptor signaling processes. Together, these results highlight a previously unknown interaction between a hookworm-secreted protein and B cells, which has implications for helminth-driven immunomodulation and vaccine development. Further, the novel use of human protein microarrays to identify host-pathogen interactions, coupled with ex vivo binding studies and subsequent analyses of global gene expression in human host cells, demonstrates a new pipeline by which to explore the molecular basis of infectious diseases.
Journal
Journal of Infectious Diseases
Publication Name
N/A
Volume
211
ISBN/ISSN
0022-1899
Edition
N/A
Issue
3
Pages Count
10
Location
N/A
Publisher
Oxford University Press
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1093/infdis/jiu451