Adaptive management of marine mega-fauna in a changing climate
Journal Publication ResearchOnline@JCUAbstract
Management of marine mega-fauna in a changing climate is constrained by a series of uncertainties, often related to climate change projections, ecological responses, and the effectiveness of strategies in alleviating climate change impacts. Uncertainties can be reduced over time through adaptive management. Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. To successfully implement the adaptive management cycle, different steps (planning, designing, learning and adjusting) need to be systematically implemented to inform earlier steps in an iterative way. Despite the critical role that adaptive management is likely to play in addressing the impacts of climate change on marine mega-fauna few managers have successfully implemented an adaptive management approach. We discuss the approaches necessary to implement each step of an adaptive management cycle to manage marine mega-fauna in a changing climate, highlighting the steps that require further attention to fully implement the process. Examples of sharks and rays (Selachimorpha and Batoidea) on the Great Barrier Reef and little penguins, Eudyptula minor, in south-eastern Australia are used as case studies. We found that successful implementation of the full adaptive management cycle to marine mega-fauna needs managers and researchers to: (1) obtain a better understanding of the capacity of species to adapt to climate change to inform the planning step; (2) identify strategies to directly address impacts in the marine environment to inform the designing step; and (3) develop systematic evaluation and monitoring programs to inform the learning step. Further, legislation needs to flexible to allow for management to respond.
Journal
Mitigation and Adaptation Strategies for Global Change
Publication Name
N/A
Volume
21
ISBN/ISSN
1573-1596
Edition
N/A
Issue
2
Pages Count
16
Location
N/A
Publisher
Springer
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1007/s11027-014-9590-3