Europium confined cyclen dendrimers with photophysically active triazoles

Journal Publication ResearchOnline@JCU
Antoni, Per;Malkoch, Michael;Vamvounis, George;Nyström, Daniel;Nyström, Andreas;Lindgren, Mikael;Hult, Anders
Abstract

Dendrimers up to the fourth generation (G1–G4) were successfully synthesized via the efficient copper catalyzed 1,3-dipolar cycloaddition between primary alkynes and azides (CuAAC), also referred to as a click reaction. The synthetic protocol involved the preparation of presynthesized dendron wedges that subsequently were attached to a tetra-valent alkyne functional cyclen core. These constructed structures integrated stable triazole groups "intra-locked" between the cyclen and dendron wedges. The incorporation of a lanthanide metal ion, europium, into the interior of all cyclen dendrimers was monitored by FT-IR. Interestingly, the photophysical results showed that the proximate triazole not only acts as a stable linker but also as a sensitizers, transferring its singlet–singlet excitation in the ultraviolet region (270–290 nm) to the partially filled luminescent lanthanide 4f shell. An increase of luminescence decay time from the lanthanide 5D0 → 7F2 emission was observed with increasing dendrimer size, indicating that the shielding effect of the dendron wedges is important for the relaxation of the photo-excitation and energy transfer. To the best of our knowledge, this is the first time a set of dendron wedges have successfully been attached to a cyclen metal ion cage via the versatile click reaction. Furthermore, the produced triazoles intra-locked in close proximity to the macrocycle core elucidated an interesting photophysical function.

Journal

N/A

Publication Name

N/A

Volume

18

ISBN/ISSN

1364-5501

Edition

N/A

Issue

22

Pages Count

10

Location

N/A

Publisher

R S C Publishing

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1039/b802197j