Europium confined cyclen dendrimers with photophysically active triazoles
Journal Publication ResearchOnline@JCUAbstract
Dendrimers up to the fourth generation (G1–G4) were successfully synthesized via the efficient copper catalyzed 1,3-dipolar cycloaddition between primary alkynes and azides (CuAAC), also referred to as a click reaction. The synthetic protocol involved the preparation of presynthesized dendron wedges that subsequently were attached to a tetra-valent alkyne functional cyclen core. These constructed structures integrated stable triazole groups "intra-locked" between the cyclen and dendron wedges. The incorporation of a lanthanide metal ion, europium, into the interior of all cyclen dendrimers was monitored by FT-IR. Interestingly, the photophysical results showed that the proximate triazole not only acts as a stable linker but also as a sensitizers, transferring its singlet–singlet excitation in the ultraviolet region (270–290 nm) to the partially filled luminescent lanthanide 4f shell. An increase of luminescence decay time from the lanthanide 5D0 → 7F2 emission was observed with increasing dendrimer size, indicating that the shielding effect of the dendron wedges is important for the relaxation of the photo-excitation and energy transfer. To the best of our knowledge, this is the first time a set of dendron wedges have successfully been attached to a cyclen metal ion cage via the versatile click reaction. Furthermore, the produced triazoles intra-locked in close proximity to the macrocycle core elucidated an interesting photophysical function.
Journal
N/A
Publication Name
N/A
Volume
18
ISBN/ISSN
1364-5501
Edition
N/A
Issue
22
Pages Count
10
Location
N/A
Publisher
R S C Publishing
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1039/b802197j