Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella Typhimurium infections

Journal Publication ResearchOnline@JCU
Kupz, Andreas;Scott, Timothy A.;Belz, Gabrielle T.;Andrews, Daniel M.;Greyer, Marie;Lew, Andrew M.;Brooks, Andrew G.;Smyth, Mark J.;Curtiss, Roy;Bedoui, Sammy;Strugnell, Richard A.
Abstract

IFN-γ is critical for immunity against infections with intracellular pathogens, such as Salmonella enterica. However, which of the many cell types capable of producing IFN-γ controls Salmonella infections remains unclear. Using a mouse model of systemic Salmonella infection, we observed that only a lack of all lymphocytes or CD90 (Thy1)+ cells, but not the absence of T cells, Retinoic acid-related orphan receptor (ROR)-γt–dependent lymphocytes, (NK)1.1+ cells, natural killer T (NKT), and/or B cells alone, replicated the highly susceptible phenotype of IFN-γ–deficient mice to Salmonella infection. A combination of antibody depletions and adoptive transfer experiments revealed that early protective IFN-γ was provided by Thy1-expressing natural killer (NK) cells and that these cells improved antibacterial immunity through the provision of IFN-γ. Further analysis of NK cells producing IFN-γ in response to Salmonella indicated that less mature NK cells were more efficient at mediating antibacterial effector function than terminally differentiated NK cells. Inspired by recent reports of Thy1+ NK cells contributing to immune memory, we analyzed their role in secondary protection against otherwise lethal WT Salmonella infections. Notably, we observed that a newly generated Salmonella vaccine strain not only conferred superior protection compared with conventional regimens but that this enhanced efficiency of recall immunity was afforded by incorporating CD4−CD8−Thy1+ cells into the secondary response. Taken together, these findings demonstrate that Thy1-expressing NK cells play an important role in antibacterial immunity.

Journal

Proceedings of the National Academy of Sciences of the United States of America

Publication Name

N/A

Volume

110

ISBN/ISSN

1091-6490

Edition

N/A

Issue

6

Pages Count

6

Location

N/A

Publisher

National Academy of Sciences

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1073/pnas.1222047110