Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration
Journal Publication ResearchOnline@JCUAbstract
We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (WP) to elevated CO2 concentration ([CO2]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO2 partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO2]. The mean ratio of final plant dry mass at elevated to ambient [CO2] (ME/MA) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in ME/MA among legume species (0.92–2.35), whereas nonlegumes varied much less (1.21–1.29). Variation among legume species in ME/MA was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. WP increased markedly in response to elevated [CO2] in all species. The ratio of intercellular to ambient CO2 partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO2], as did carbon isotope discrimination, suggesting that WP should increase proportionally for a given increase in atmospheric [CO2]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO2] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO2].
Journal
Plant Physiology
Publication Name
N/A
Volume
157
ISBN/ISSN
1532-2548
Edition
N/A
Issue
1
Pages Count
14
Location
N/A
Publisher
American Society of Plant Biologists
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1104/pp.111.182436