Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, Pinctada maxima

Journal Publication ResearchOnline@JCU
Jones, David B.;Jerry, Dean R.;Forêt, Sylvain;Konovalov, Dmitry A.;Zenger, Kyall R.
Abstract

Pearl oysters are not only farmed for their gemstone quality pearls worldwide, but they are also becoming important model organisms for investigating genetic mechanisms of biomineralisation. Despite their economic and scientific significance, limited genomic resources are available for this important group of bivalves, hampering investigations into identifying genes that regulate important pearl quality traits and unique biological characteristics (i.e. biomineralisation). The silver-lipped pearl oyster, Pinctada maxima, is one species where there is interest in understanding genes that regulate commercially important pearl traits, but presently, there is a dearth of genomic information. The objective of this study was to develop and validate a large number of type I genome-wide single nucleotide polymorphisms (SNPs) for P. maxima suitable for high-throughput genotyping. In addition, sequence annotations and Gene Ontology terms were assigned to a large mantle tissue 454 expressed sequence tag assembly (96,794 contigs) and information on known bivalve biomineralisation genes was incorporated into SNP discovery. The SNP discovery effort resulted in the de novo identification of 172,625 SNPs, of which 9,108 were identified as high value [minor allele frequency (MAF) ≥ 0.15, read depth ≥ 8]. Validation of 2,782 of these SNPs using Illumina iSelect Infinium genotyping technology returned some of the highest assay conversion (86.6 %) and validation (59.9 %; mean MAF 0.28) rates observed in aquaculture species to date. Genomic resources presented here will be pivotal to future research investigating the biological mechanisms behind biomineralisation and will form a strong foundation for genetic selective breeding programs in the P. maxima pearling industry.

Journal

Marine Biotechnology

Publication Name

N/A

Volume

15

ISBN/ISSN

1436-2236

Edition

N/A

Issue

6

Pages Count

12

Location

N/A

Publisher

Springer

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1007/s10126-013-9514-3