Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach

Journal Publication ResearchOnline@JCU
Fuchs, C.;Waindzoch, T.;Faessler, Amand;Kosov, D.S.
Abstract

We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudovector choice for the covariant representation of the T matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T matrix representation. Starting from a complete pseudovector representation of the T matrix, which reproduces correctly the pseudovector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.

Journal

N/A

Publication Name

N/A

Volume

58

ISBN/ISSN

1089-490X

Edition

N/A

Issue

4

Pages Count

11

Location

N/A

Publisher

American Physical Society

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1103/PhysRevC.58.2022