Convergence of the electrostatic interaction based on topological atoms

Journal Publication ResearchOnline@JCU
Popelier, P.L.A.;Joubert, L.;Kosov, D.S.
Abstract

An atom−atom partitioning of the electrostatic energy between unperturbed molecules is proposed on the basis of the topology of the electron density. Atom−atom contributions to the electrostatic energy are computed exactly, i.e., via a novel six-dimensional integration over two atomic basins, and by means of the spherical tensor multipole expansion, up to total interaction rank L = lA + lB + 1 = 6. The convergence behavior of the topological multipole expansion is compared with that using distributed multipole analysis (DMA) multipole moments for a set of van der Waals complexes at the B3LYP/6-311+G(2d,p) level. Within the context of the Buckingham−Fowler model it is shown that the topological and DMA multipole moments converge to a very similar interaction energy and geometry (average absolute discrepancy of 1.3 kJ/mol and 1.3°, respectively) and are both in good to excellent agreement with supermolecule calculations.

Journal

Journal of Physical Chemistry: Part A

Publication Name

N/A

Volume

105

ISBN/ISSN

1520-5215

Edition

N/A

Issue

35

Pages Count

8

Location

N/A

Publisher

American Chemical Society

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1021/jp011511q