Nanotribological and nanomechanical properties of plasma-polymerized polyterpenol thin films

Journal Publication ResearchOnline@JCU
Bazaka, Kateryna;Jacob, Mohan V.
Abstract

Organic plasma polymers are currently attracting significant interest for their potential in the areas of flexible optoelectronics and biotechnology. Thin films of plasma-polymerized polyterpenol fabricated under varied deposition conditions were studied using nanoindentation and nanoscratch analyses. Coatings fabricated at higher deposition power were characterized by improved hardness, from 0.33 GPa for 10 W to 0.51 GPa for 100 W at 500-μN load, and enhanced wear resistance. The elastic recovery was estimated to be between 0.1 and 0.14. Coatings deposited at higher RF powers also showed less mechanical deformation and improved quality of adhesion. The average (R a) and root mean square (R q) surface roughness parameters decreased, from 0.44 nm and 0.56 nm for 10 W to 0.33 nm and 0.42 nm for 100 W, respectively.

Journal

N/A

Publication Name

N/A

Volume

26

ISBN/ISSN

0884-2914

Edition

N/A

Issue

23

Pages Count

10

Location

N/A

Publisher

Materials Research Society

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1557/jmr.2011.349