In silico whole-genome EST analysis reveals 2322 novel microsatellites for the silver-lipped pearl oyster, Pinctada maxima
Journal Publication ResearchOnline@JCUAbstract
Molecular stock improvement techniques such as marker assisted selection have great potential in accelerating selective breeding programmes for animal production industries. However, the discovery and application of trait/marker associations usually requires a large number of genome-wide polymorphic loci. Here, we present 2322 unique microsatellites for the silver-lipped pearl oyster, Pinctada maxima, a species of aquaculture importance throughout the Indo-Australian Archipelago for production of the highly valued South Sea pearl. More than 1.2 million Roche 454 expressed sequence tag (EST) reads were screened for microsatellite repeat motifs. A total of 12,604 sequences contained either a di, tri, tetra, penta or hexa microsatellite repeat motif (n ≥ 6), with 6435 of these sequences having sufficient flanking regions for primer development. All identified microsatellites with designed primers were condensed into 2322 unique clusters (i.e., unique loci) of which 360 were shown to be polymorphic based on multiple sequence reads with different repeat motifs. Genotyping of five microsatellite loci demonstrated that in silico evaluation of polymorphism levels was a very useful method for identification of polymorphic loci, with the variation uncovered being a lower bound. Gene Ontology annotations of sequences containing microsatellites suggest that most are derived from a diverse array of unique genes. This EST derived microsatellite database will be a valuable resource for future studies in genetic map construction, diversity analysis, quantitative trait loci analysis, association mapping and marker assisted selection, not only for P. maxima, but also closely related species within the genus Pinctada.
Journal
Marine Genomics
Publication Name
N/A
Volume
4
ISBN/ISSN
1876-7478
Edition
N/A
Issue
4
Pages Count
4
Location
N/A
Publisher
Elsevier
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1016/j.margen.2011.06.007