Extending the cost-benefit model of thermoregulation: high-temperature environments

Journal Publication ResearchOnline@JCU
Vickers, Mathew;Manicom, Carryn;Schwarzkopf, Lin
Abstract

The classic cost-benefit model of ectothermic thermoregulation compares energetic costs and benefits, providing a critical framework for understanding this process (Huey and Slatkin 1976). It considers the case where environmental temperature (Te) is less than the selected temperature of the organism (Tsel), and it predicts that, to minimize increasing energetic costs of thermoregulation as habitat thermal quality declines, thermoregulatory effort should decrease until the lizard thermoconforms. We extended this model to include the case where Te exceeds Tsel, and we redefine costs and benefits in terms of fitness to include effects of body temperature (Tb) on performance and survival. Our extended model predicts that lizards will increase thermoregulatory effort as habitat thermal quality declines, gaining the fitness benefits of optimal Tb and maximizing the net benefit of activity. Further, to offset the disproportionately high fitness costs of high Te compared with low Te, we predicted that lizards would thermoregulate more effectively at high values of Te than at low ones. We tested our predictions on three sympatric skink species (Carlia rostralis, Carlia rubrigularis, and Carlia storri) in hot savanna woodlands and found that thermoregulatory effort increased as thermal quality declined and that lizards thermoregulated most effectively at high values of Te.

Journal

American Naturalist

Publication Name

N/A

Volume

177

ISBN/ISSN

1537-5323

Edition

N/A

Issue

4

Pages Count

10

Location

N/A

Publisher

University of Chicago Press

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1086/658150